Teaching Plan: 2018 - 19

Department: I.T. Class: M.Sc.(I.T.)

Semester: I

Subject: Data Analysis Tools

Name of the Faculty: Ms.Sheetal Panchal

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
June	PART I : COMPUTING Statistics in Modern day, C : Lines, Variables and their declarations, Functions, The debugger, Compiling and running, Pointers, Arrays and other pointer tricks, Strings Databases :Basic queries, Doing more with queries, Joins and subqueries, On database design, Folding queries into C code	01	07
July	Matrices and models :The GSL's matrices and vectors apo_da t, Shunting data, Linear algebra, Numbers, gsl_matrix and gsl_ve ctor internals, Models, Graphics: plot , Some common settings, From arrays to plots, A sampling of special plots, Animation, On producing good plots, Graphsnodes and flowcharts, Printing and LATEX	01	07
August	More coding tools : Function pointers , Data structures, Parameters, Syntactic sugar, More tools PART II : STATISTICS Distributions for description : Moments ,Sample distributions, Using the sample distributions , Non-parametric description	01	07
September	Linear projections: Principal component analysis, OLS and friends, Discrete variables, Multilevel modeling Hypothesis testing with the CLT: The Central Limit Theorem, Meet the Gaussian family, Testing a hypothesis, ANOVA, Regression , Goodness of fit.	01	07
October	Maximum likelihood estimation: Log likelihood and friends, Description: Maximum likelihood estimators, Missing data, Testing with likelihoods Monte Carlo : Random number generation, Description: Finding 6 statistics for a distribution, Inference: Finding statistics for a parameter, Drawing a distribution, Non-parametric testing	01	07

Sign of Faculty

Ms.Sheetal Panchal

Teaching Plan: 2018 - 19

Department: I.T. Class: M.Sc.(I.T.) Se

Semester:I

Subject: Data Mining

Name of the Faculty: Srushty Padte

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
	Introduction: Basics of data mining, related		08(2 hrs each
	concepts, Data mining techniques.		lec)
August	Data: Introduction, Attributes, Data Sets,		
	and Data Storage, Issues Concerning the		
	Amount and Quality of Data,.		
	Knowledge Representation: Data		
	Representation and their Categories:		
	General Insights, Categories of Knowledge		
	Representation, Granularity of Data and		
	Knowledge Representation Schemes, Sets		
	and Interval Analysis, Fuzzy Sets as		
	HumanCentric Information Granules,		
	Shadowed Sets, Rough Sets,		
	Characterization of Knowledge		
	Representation Schemes, Levels of		
	Granularity and Perception Perspectives,		
	The Concept of Granularity in Rules.		
	Data Preprocessing: Descriptive Data		
	Summarization, Data Cleaning, Data		
	Integration and Transformation, Data		
	Reduction, Data Discretization and Concept		
	Hierarchy Generation.		
	Mining Frequent Patterns, Associations,		10(2 hrs
	and Correlations: Basic Concepts, Efficient		each)
September	and Scalable Frequent Itemset Mining		
	Methods, Mining Various Kinds of		
	Association Rules, From Association Mining		
	to Correlation Analysis, Constraint-Based		
	Association Mining.		
	Classification and Prediction: What Is		
	Classification?, What Is Prediction?, Issues		
	Regarding Classification and Prediction,		
	Classification by Decision Tree Induction,		
	Bayesian Classification, Rule-Based		
	Classification, Classification by Back-		
	propagation, Support Vector Machines,		
	Associative Classification: Classification by		10(2 hrs

	Association Rule Analysis, Lazy Learners,	each)
October	Other Classification Methods, Prediction,	
	Accuracy and Error Measures, Evaluating	
	the Accuracy of a Classifier or Predictor,	
	Ensemble Methods Increasing the	
	Accuracy, Model Selection.	
	Cluster Analysis: What Is Cluster Analysis?,	
	Types of Data in Cluster Analysis, A	
	Categorization of Major Clustering	
	Methods, Partitioning Methods,	
	Hierarchical Methods	
	Cluster Analysis: Density-Based Methods,	10(2hrs each)
	Grid-Based Methods, Model-Based	
November	Clustering Methods, Clustering High-	
	Dimensional Data, Constraint-Based	
	Cluster Analysis, Outlier Analysis.	
	Graph Mining, Social Network Analysis,	
	and Multirelational Data Mining: Graph	
	Mining, Social Network Analysis,	
	Multirelational Data Mining.	
	Mining Object, Spatial, Multimedia, Text,	
	and Web Data: Multidimensional Analysis	
	and Descriptive Mining of Complex Data	
	Objects, Spatial Data Mining, Multimedia	
	Data Mining, Text Mining, Mining the	
	World Wide Web.	
December		

Sign of Faculty

Teaching Plan: 2018 - 19

Department: I.T. Class: M.Sc.(I.T.) Semester: I

Subject: Distributed Systems

Name of the Faculty: Larissa Pegado

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
August	Characterization Of Distributed Systems: Introduction, Examples of Distributed Systems, Trends In Distributed Systems, Focus On Resource Sharing, Challenges, Case Study: The World Wide Web. System Models: Physical Models, Architectural Models, Fundamental Models Networking And Internetworking: Types Of Network, Network Principles, Internet Protocols, Case Studies: Ethernet, Wifi And Bluetooth.		8
September	Interprocess Communication: The ApiFor The Internet Protocols,External Data Representation AndMarshalling,MulticastCommunication, Network Virtualization:Overlay Networks, CaseStudy: MPIRemote Invocation: Request-ReplyProtocols, Remote Procedure Call,Remote Method Invocation,Case Study:Java RMIIndirect Communication: Groupcommunication, Publish-subscribesystems, Message queues, Sharedmemory approachesWeb Services: Web services,Servicedescriptions and IDL for webservices, A directory service for use withweb services, XML security,Coordination of web services,applications of web services	Internal Test 1	16

	Coordination And Agreement:	Internal Test 2	16
	Distributed mutual exclusion		
October	Elections Coordination and agreement in		
	group communication,		
	Consensus and related problems		
	Name Services: Name services and the		
	Domain Name System,		
	Directory services, Case study: The		
	Global Name Service, Case study:		
	The X.500 Directory Service.		
	Time And Global States: Clocks, events		
	and process states,		
	Synchronizing physical clocks, Logical		
	time and logical clocks,		
	Global states, Distributed debugging		
	Distributed Transactions: Flat and		12
	nested distributed transactions,		
	Atomic commit protocols, Concurrency		
November	control in distributed		
	transactions, Distributed deadlocks.		
	Replication: System model and the role of		
	group communication,		
	Fault-tolerant services, Case studies of		
	highly available services: The		
	gossip architecture, Bayou and Coda,		
	Transactions with replicated data		
	Mobile And Ubiquitous Computing:		
	Association, Interoperation,		
	Sensing and context awareness, Security		
	and privacy, Adaptation.		

Sign of Faculty

Teaching Plan: 2018 - 19

Department: I.T. Class: M.Sc.(I.T.)

Semester:I

Subject: Software Testing

Name of the Faculty: Prof. Supritha Bhandary

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
Aug	Test Basics: Introduction, Testing in the Software Lifecycle, Specific Systems, Metrics and Measurement, Ethics Testing Processes: Test Analysis and Design, Non-functional Test Objectives, Identifying and Documenting Test Conditions, Test Oracles, Standards, Static Tests, Metrics, Test Implementation and Execution, Test Procedure Readiness, Test Environment Readiness, Starting Test Execution, Running a Single Test Procedure, Logging Test Results, Use of Amateur Testers, Standards, Metrics, Evaluating Exit Criteria and Reporting, Test Suite, Defect Breakdown, Confirmation Test Failure Rate, System Test Exit Review, Standards, Evaluating Exit Criteria and Reporting Exercise, System Test Exit Review, Test closure activities.		18
Sep	Test Management:Introduction, Test Management Documentation, Test Plan Documentation Templates, Test Estimation, Scheduling and Test Planning, Test Progress Monitoring and Control, Business Value of Testing, Distributed, Outsourced, and Insourced Testing, Risk-Based Testing, Risk Management, Risk Identification, Risk Analysis or Risk Assessment, Risk Mitigation or Risk Control, Risk Identification and Assessment Results, Risk-Aware Testing Standards, Risk Based Testing Exercise, Project Risk By- Products, Requirements Defect By-Products, Test Case Sequencing Guidelines, Failure Mode and Effects Analysis, Test Management Issues	Class Test	22
Oct	Test TechniquesDebrief, Common Themes, Static Analysis,Complexity Analysis, Code Parsing Tools,Standards and Guidelines, Data-FlowAnalysis, Set-Use Pairs, Set-Use Pair Example,		12

	Data-Flow Exercise, Data-Flow Exercise		
	Debrief, Data-Flow Strategies, Static Analysis		
	for Integration Testing, Call-Graph Based		
	McCabe Design Predicate Approach to		
	Detection, API Misuse Detection.		
	Integration Testing, Hex Converter Example,		
	McCabe Design		
	Predicate Exercise, McCabe Design Predicate		
	Exercise Debrief,		
	Dynamic Analysis, Memory Leak Detection,		
	Wild Pointer		
Nov	Tests of Software Characteristics	Assignment	08
	Introduction, The Principles of Reviews, Types		
	of Reviews, Introducing Reviews, Success		
	Factors for Reviews, Deutsch's Design Review		
	Checklist, Marick's Code Review Checklist, The		
	Open Laszlo Code Review Checklist, Incident		
	Management		
	Standards and Test Process Improvement		
	Test Techniques		
	Static and Dynamic Analysis Tools,		
	Performance Testing Tools, Monitoring Tools,		
	Web Testing Tools, Simulators and Emulators,		
	Data-Driven Architecture, Keyword-Driven		
	Architecture, Keyword Exercise, Performance		
	Testing, Performance Testing Exercise		

Sign of Faculty